
Fall 2020 MATH3060 HW4 Solution

TA: LEE, Yat Long Luca
Email: yllee@math.cuhk.edu.hk

Office: Room 711 AB1 (Temporary), Room 505 AB1 (Until further notice)
Office Hour: Send me an email first, then we will arrange a meeting (if you need it).
Remark: Please let me know if there are typos or mistakes.

Q1

Let (X, d) be a metric space.

(a) If A is a closed subset of X and x0 ∈ X \ A. Show that there is a continuous function f

on X such that f(x0) = 1 and f(x) = 0 for all x ∈ A.

(b) If A,B are disjoint closed subsets of X. Show that there exists a continuous function g of
X such that g(x) = 1 for all x ∈ A and g(x) = 0 for all x ∈ B

(c) Given A,B as in part (b), show that there exists disjoint open sets G1 and G2 such that
A ⊂ G1 and B ⊂ G2.

Solution:

(a) Recall the distance of a point x ∈ X with a subset A ⊂ X is defined to be

d(x,A) := inf{d(x, y) : y ∈ A}

Define f : X → R by

f(x) :=
d(x,A)

d(x0, A)

we need to show that f is well-defined, i.e., we want to show that d(x0, A) ∕= 0.

Suppose that d(x0, A) = 0, then there exists a sequence {xn} in A such that d(x0, xn) < 1
n .

As n → ∞, we have d(x0, xn) → 0, meaning that xn → x0 w.r.t d. However, since A is
closed, we must have x0 ∈ A. Contradiction. Thus d(x0, A) ∕= 0, equivalently, d(x0, A) > 0.

Note that f is continuous which is shown in lecture 7 already. Thus, we see

f(x0) =
d(x0, A)

d(x0, A)
= 1

and
f(x) =

d(x,A)

d(x0, A)
= 0

for all x ∈ A because d(x, x) = 0 for all x ∈ A and hence the infimum must be zero.

(b) Define g : X → R by

g(x) :=
d(x,B)

d(x,A) + d(x,B)

We now check that g is well-defined, i.e., to check d(x,A) + d(x,B) > 0.
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Suppose x ∈ A, then d(x,A) = 0, while A∩B = ∅, hence d(x,B) > 0. Similarly for x ∈ B.
For x /∈ A and x /∈ B, we have d(X,A) > 0 and d(x,B) > 0, then d(x,A) + d(x,B) > 0.
Thus g is well-defined.

Next, we check the continuity of g

We take a sequence of points {xn} from X, for which xn → x as n → ∞. By continuity of
d(x,A) and d(x,B) as proven in lecture 7, we have the property that d(xn, A) → d(x,A)

and d(xn, B) → d(x,B) as n → ∞. Thus,

g(xn) =
d(xn, A)

d(xn, A) + d(xn), B)
→ d(x,A)

d(x,A) + d(x,B)
= g(x) as n → ∞

hence g is continuous.

Lastly, we check the required conditions:

Now that we see, for all x ∈ A,

g(x) =
d(x,B)

d(x,A) + d(x,B)
=

d(x,B)

0 + d(x,B)
= 1

and for all x ∈ B,

g(x) =
d(x,B)

d(x,A) + d(x,B)
=

0

d(x,A) + 0
= 0

(c) Fix 0 < δ < 1
2 , define G1 := g−1(1− δ, 1 + δ) and G2 := g−1(−δ, δ). They are open since

they are preimages of open intervals in R via g which is continuous.

For all x ∈ A, g(x) = 1 ∈ (1 − δ, 1 + δ), implying that x ∈ g−1(1 − δ, 1 + δ) = G1.
Thus A ⊂ G1.
Similarly, for all x ∈ B, we have x ∈ G2. Thus B ⊂ G2.

Now that we show G1 ∩ G2 = ∅. Suppose it is not. Then there exists x ∈ G1 ∩ G2,
equivalently, g(x) ∈ (1− δ, 1 + δ) ∩ (−δ, δ). By our choice of δ, such an intersection must
be empty. Thus contradiction.

!
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Q2

Show that Ψ : (C[−1, 1], d) → R given by Ψ(f) = f(0) is not a continuous mapping between
metric spaces. (R is always assumed to be equipped with the standard metric d(x, y) = |x− y|
for all x, y ∈ R).

Solution:
The idea is to define a convergent sequence of functions on (C[−1, 1], d) such that Ψ does not
preserve the convergence.

Define

fn(x) =

!
"""#

"""$

−nx+ 1 if x ∈ [0, 1
n ]

nx+ 1 if x ∈ [− 1
n , 0]

0 if x ∈ [−1,− 1
n ] ∪ [ 1n , 0]

Graphically,

We can see that d(fn, 0) → 0 as n → ∞, since

d(fn, 0) =

% 1

−1
|fn| dx =

1

n

which tends to 0 as n → ∞.

However,
Ψ(fn) = fn(0) = 1 ∕= 0 as n → ∞

hence Ψ is not continuous.
!
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Q3

Recall that l2 = {x = (x1, x2, ...) :
&∞

i=1 |xi|2 < ∞, xi ∈ R}. Show that the set

H :=

'
x = (x1, x2, ...) : |xi| ≤

1

i
, ∀i = 1, 2, ...

(

is a closed subset in (l2, d2).

Solution:
Note that H ⊂ l2, since for all x ∈ H,

&∞
i=1 |xi|2 ≤

&∞
i=1

1
i2

< ∞.

Take a convergent sequence1 {xn} from H. Our goal is to show that the limit of {xn},
denoted by x, is in H as well.

Since xn → x w.r.t, d2 (defined in HW3), then for all ε > 0, there exists N ∈ N such that
for all n > N , we have d2(xn, x) < ε, equivalently,

) ∞*

i=1

|xni − xi|2
+ 1

2

< ε

so, for sufficiently larger n, we have |xni − xi| < ε for all i. Therefore

||xni |− |xi|| ≤ |xni − xi| < ε

meaning that

|xi| < |xni |+ ε ≤ 1

i
+ ε

since ε is arbitrary, as ε → 0+, we have

|xi| ≤
1

i

hence x ∈ H.

Therefore H is closed.
!

1Raising the index n as a superscript because xi is used to denoted the components of x ∈ l2. If you wish to
do research in differential geometry, you need to get used to this style of writing the summation index, because
Einstein summation is always used, i.e., instead of writing

!
i cixi, people write cix

i to mean summation over i.
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Q4

Prove the generalized Hölder’s inequality: for all fi ∈ R[a, b], i = 1, ..., n

% b

a
|f1f2 · · · fn| dx ≤ ‖f1‖p1 ‖f2‖p2 · · · ‖fn‖pn

where pi > 1, for all i = 1, ..., n, and satisfies
&n

i=1
1
pi

= 1.

Solution:
We prove the desired result by induction on n. For the base case, take n = 2. then it is the
Hölder’s inequality, so it holds.

Assume that the inequality holds for n = k, i.e.,
% b

a
|f1f2 · · · fk| dx ≤ ‖f1‖p1 ‖f2‖p2 · · · ‖fk‖pk

where pi > 1, for all i = 1, ..., k and
&k

i=1
1
pi

= 1.

Now consider the n = k+ 1 case. Suppose that
&k+1

i=1
1
pi

= 1, then define q = p1
p1−1 , which is

chosen from 1
p1

= 1−
&k+1

i=2
1
pi

, then 1
q =

&k+1
i=2

1
pi

= 1− 1
p1

.

Thus, by the Hölder’s inequality, we have

% b

a

k+1,

i=1

|fi| dx =

% b

a
|f1|

k+1,

i=2

|fi| dx

≤ ‖f1‖p1

-% b

a

)
k+1,

i=2

|fi|
+q

dx

. 1
q

= ‖f1‖p1

-% b

a

k+1,

i=2

|fi|q dx
. 1

q

then note that
&k+1

i=2
q
pi

=
&k+1

i=2
p1

pi(p1−1) = p1
p1−1

&k+1
i=2

1
pi

= p1
p1−1

/
1− 1

p1

0
= 1. So, by the

inductive hypothesis n = k, we have

% b

a

k+1,

i=1

|fi| dx ≤ ‖f1‖p1

-
k+1,

i=2

1% b

a
|fi|q

pi
q

2 q
pi

. 1
q

= ‖f‖p1
k+1,

i=2

1% b

a
|fi|pi dx

2 1
pi

=

k+1,

i=1

‖fi‖pi

!
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Q5

Show that if p2 > p1 ≥ 1, then there exists a constant C > 0 such that

‖f‖p1 ≤ C ‖f‖p2

for all f ∈ R[a, b].

Solution:
Since p2 > p1, we have p2

p1
> 1. Let q be the conjugate of p2

p1
, that is, 1

q +
p1
p2

= 1.

Then we apply the Hölder’s inequality

‖f‖p1 =

1% b

a
|f |p1 dx

2 1
p1

≤

3

4
1% b

a
|f |p1

p2
p1

2 p1
p2

1% b

a
|1|q

2 1
q

5
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1
p1

= C

1% b

a
|f |p2

2 1
p2

= C ‖f‖p2

where

C =

1% b

a
|1|q

2 1
p1q

> 0

!

6


